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Efficient synthesis of 6-mono-bromo-1,1�-bi-2-naphthol
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Abstract—Through mono-ester formation of 1,1�-bi-2-naphthol (BINOL) with pivaloyl chloride the selective mono-bromination
was achieved cleanly on the other ring to afford 6-mono-bromo-1,1�-bi-2-naphthol in an efficient 86% yield. © 2002 Elsevier
Science Ltd. All rights reserved.

Polymer supported reagents and catalysts are very valu-
able and offer many advantages such as easy isolation,
recovery and re-use.1 Notwithstanding, there are also
disadvantages due mainly to the extra cost associated
with the catalyst preparation of properly functionalized
chiral ligands. By using suitable solid supports, poly-
mer-supported catalysts can achieve similar selectivity
and reaction rates as traditional homogeneous cata-
lysts.2 Most chiral ligands are C2 symmetric,3 which
makes them difficult to functionalize selectively for
attachment to the polymer support. We chose to study
the binaphthyl system as a useful chiral scaffold
through the preparation of mono-bromo-1,1�-bi-2-
naphthol (1). From this molecule, a variety of function-
alized derivatives of BINOL and BINAP (bisdiphenyl-
phosphino-1,1�-binaphthyl) could be prepared for poly-
mer supports (Scheme 1).4,5 Although one can prepare

6-monobromo-1,1�-bi-2-naphthol easily via non-selec-
tive methods, such as oxidative coupling between 6-
bromo-naphth-2-ol and naphth-2-ol, controlled
bromination of 1,1�-bi-2-naphthol, or debromination of
6,6�-dibromo-1,1�-bi-2-naphthol,1c,6 further purification
by chromatography is generally required. Here we wish
to report a very efficient synthesis of 6-mono-bromo-
BINOL from BINOL in 86% isolated yield without the
need for column purification.

Our strategy was to first prepare the monoester of
1,1�-bi-2-naphthol selectively (Scheme 2). Since the two
hydroxy groups are in close proximity to each other,
mono-functionalization may be possible using a bulky
acylating agent. After several reagents were explored, 1
equiv. of pivaloyl chloride provided excellent selectivity
at 95:4:1 (product: bis-ester: starting material). Simple

Scheme 1. Transition metal-catalyzed cross coupling reactions.
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Scheme 2.

aqueous workup and crystallization from hexane (10
mL/g) afforded pure mono-pivaloate 2 (99.6% purity)
in 93% isolated yield.7 With one of the naphthol rings
deactivated, mono-bromination was selective at the 6-
position of the other naphthol. After bromination, in
situ saponification and simple aqueous work up, crys-
tallization from hexane/MTBE (3:1) afforded pure 6-
mono-bromo-1,1-bi-2-naphthol (1) in 93% isolated
yield with 98.9% purity. Chiral resolution using our
previously published procedure worked very well and
either enantiomer could be obtained with >98% ee.8,9

In conclusion, we have demonstrated a practical
method to produce either enantiomer of 6-mono-
bromo-1,1�-bi-2-naphthol (1) in 86% overall yield.
Selective ester formation can be carried out with pival-
oyl chloride. Through deactivation of one naphthyl ring
the other ring can in turn undergo selective bromina-
tion. The bromide is expected to offer an effective
handle for attachment to a solid support for use as a
supported ligand in catalysis.

Experimental

To a solution of 1,1�-bi-2-naphthol (17.2 g, 60 mmol) in
THF (150 mL) at 0 to −10°C (ice/acetone) was added
triethylamine (12 mL, 86 mmol), pyridine (1.2 mL, 1.5
mmol), followed by pivaloyl chloride (8.1 mL, 66
mmol). The resulting solution was allowed to warm
from 0°C to room temperature and aged at room
temperature for several hours until the starting material
was almost consumed (monitored by HPLC, <1% as
judged by HPLC).10 The reaction mixture was
quenched with 150 mL water, pH adjusted to 1 with 6N
HCl and extracted with toluene (150 mL). The toluene
layer was washed with 0.1N HCl (150 mL), followed by
a water wash (150 mL). The organic layer was sepa-
rated, concentrated under reduced pressure, and the
product 2 was crystallized from hexane to afford 2 as a
white solid (21.2 g, 95 wt%, 93%) with 2.7% loss in the
mother liquid. The isolated product 2 was 99.6% pure
with 0.15% starting material and 0.2% bis-pivalate of
BINOL. 1H NMR (CDCl3, 250 MHz) � 8.08 (d, J=9
Hz, 1H); 7.98 (d, J=8 Hz, 1H); 7.9 (d, J=9 Hz, 1H);
7.84 (dd, J=1, 8 Hz, 1H); 7.52 (m, 1H); 7.3 (m, 6H);
7.07 (d, J=9 Hz, 1H); 0.8 (s, 9H). 13C NMR (CDCl3,
63 MHz) 177.9; 151.8; 148.3; 133.7; 133.5; 132.2; 130.8;
130.3; 129.0; 128.4; 127.9; 127.5; 126.7; 126.2; 125.7;
124.6; 123.6; 123.1; 121.9; 118.3; 114.3; 38.9; 26.5. Anal.
Calcd for C25H22O3: C, 81.06; H, 5.99. Found: C, 81.07;
H, 6.00%.

To a solution of the mono-ester of BINOL 2 (3.60 g, 10
mmol) in 25 mL acetonitrile and 25 mL toluene at 0°C
was added bromine (0.55 mL, 10.7 mmol). The reaction
mixture was warmed to room temperature and moni-
tored by HPLC. The reaction conversion was only 50%
so additional bromine was added (0.45 mL, 8.8 mmol)
and the solution was aged for 30 min. The reaction
conversion increased to 99% (as judged by HPLC). The
reaction was quenched with NaHSO3 (2 g, �19 mmol,
to reduce excess bromine) and NaOH (20 mL, 5N). The
saponification was complete in 1 h. The reaction solu-
tion was acidified with HCl to pH�1, then extracted
with ethyl acetate (100 mL). The organic layer was
separated, washed once with water (100 mL) and con-
centrated under reduced pressure to an oil. The product
1 was crystallized in 3:1 ratio of hexane:MTBE (30 mL
hexane:10 mL MTBE) to afford an off-white solid (3.40
g, 98.9% purity, 93% yield). 1H NMR (CDCl3, 250
MHz) � 7.0 (d, J=8.1 Hz, 1H); 7.08 (dd, J=8.1, 1 Hz,
1H); 7.32 (m, 5H); 7.80 (d, J=8.8 Hz, 1H); 7.86 (dd,
J=8.1, 1 Hz, 1H); 7.91 (d, J=8.8 Hz, 1H); 8.0 (d,
J=2.0 Hz, 1H). 13C NMR (63 MHz, CDCl3) � 110.2;
111.3; 117.7; 117.8; 118.8; 123.9; 124.1; 126.0; 127.6;
128.4; 129.4; 130.2; 130.3; 130.5; 130.6; 131.5; 132.0;
133.2; 152.6; 152.9. Anal. Calcd for C20H13BrO2: C,
65.77; H, 3.59; Br, 21.88. Found: C, 65.58; H, 3.75; Br,
21.71%.
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